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Abstract

Correspondence analysis, multiple correspondence analysis, preference mapping, and multidimensional
preference analysis are descriptive statistical methods that generate graphical displays from data matri-
ces. These methods are used by marketing researchers to investigate relationships among products and
individual differences in preferences for those products. The end result is a two- or three-dimensional
scatter plot that shows the most salient information in the data matrix. This chapter describes these
methods, shows examples of the graphical displays, and discusses marketing research applications.∗

Introduction

Correspondence analysis (CA), multiple correspondence analysis (MCA), preference mapping
(PREFMAP), and multidimensional preference analysis (MDPREF) are descriptive statistical meth-
ods that generate graphical displays from data matrices. These methods are sometimes referred to as
perceptual mapping methods. They simultaneously locate two or more sets of points in a single plot,
and all emphasize presenting the geometry of the data. CA simultaneously displays in a scatter plot
the row and column labels from a two-way contingency table or crosstabulation constructed from two
categorical variables. MCA simultaneously displays in a scatter plot the category labels from more
than two categorical variables. MDPREF displays both the row labels (products) and column labels
(people) from a data matrix of continuous variables. PREFMAP shows rating scale data projected into
a plot of row labels−for example, from an MDPREF analysis. These methods are used by marketing
researchers to investigate relationships among products and individual differences in preferences for
those products.

This chapter will only discuss these techniques as methods of generating two-dimensional scatter plots.
However, three-dimensional and higher-dimensional results can also be generated and displayed with
modern interactive graphics software and with scatter plot matrices.

∗This chapter is a revision of a paper that was published in the 1992 National Computer Graphics Associa-
tion Conference Proceedings. Copies of this chapter (TS-722L) and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote stat.html#market.
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Methods

This section presents the algebra and example plots for MDPREF, PREFMAP, CA, and MCA. These
methods are all similar in spirit to the biplot, which is discussed first to provide a foundation for the
other methods.

The Biplot. A biplot (Gabriel 1981) simultaneously displays the rows and columns of a data matrix
in a low-dimensional (typically two-dimensional) plot. The “bi” in “biplot” refers to the joint display
of rows and columns, not to the dimensionality of the plot. Consider an (n ×m) data matrix Y, an
(n× q) matrix A with row vectors a′1, a′2, ..., a′n, and an (m× q) matrix B with row vectors b′1, b′2, ...,
b′m. The n rows of A correspond to the rows of Y, and the m columns of B′ correspond to the columns
of Y. The rank of Y is q ≤ MIN(n, m). A and B are chosen such that yij = a′ibj . If q = 2 and the rows
of A and B are plotted in a two-dimensional scatter plot, the scalar product of the coordinates a′i and
b′j exactly equals the data value yij . This kind of scatter plot is a biplot; it geometrically shows the
algebraic relationship AB′ = Y. Typically, the row coordinates are plotted as points, and the column
coordinates are plotted as vectors.

When q > 2 and two dimensions are plotted, then a′ibj is approximately equal to yij , and the display
is an approximate biplot.∗ The approximate biplot geometrically shows the algebraic relationship
AB′ ≈ Y. The best values for A and B, in terms of minimum squared error in approximating Y, are
found using a singular value decomposition (SVD),† Y = AB′ = UDV′, where D is a (q× q) diagonal
matrix and U′U = V′V = Iq, a (q × q) identity matrix. Solutions for A and B include A = U and B
= VD, or A = UD and B = V, or more generally A = UDr and B = VD(1−r), for 0 ≤ r ≤ 1. See
Gabriel (1981) for more information on the biplot.

Multidimensional Preference Analysis. Multidimensional Preference Analysis (Carroll 1972) or
MDPREF is a biplot analysis for preference data. Data are collected by asking respondents to rate their
preference for a set of objects. Typically in marketing research, the objects are products−the client’s
products and the competitors’. Questions that can be addressed with MDPREF analyses include: Who
are my customers? Who else should be my customers? Who are my competitors’ customers? Where
is my product positioned relative to my competitors’ products? What new products should I create?
What audience should I target for my new products?

For example, consumers can be asked to rate their preference for a group of automobiles on a 0 to 9
scale, where 0 means no preference and 9 means high preference. Y is an (n×m) matrix that contains
ratings of the n products by the m consumers. The data are stored as the transpose of the typical
data matrix, since the columns are the people. The goal is to produce a plot with the cars represented
as points and the consumers represented as vectors. Each person’s vector points in approximately the
direction of the cars that the person most preferred and away from the cars that are least preferred.

Figure 1 contains an example in which 25 consumers rated their preference for 17 new (at the time)
1980 automobiles. This plot is based on a principal component model. It differs from a proper biplot
of Y due to scaling factors. In principal components, the columns in data matrix Y are standardized
to mean zero and variance one. The SVD is Y = UDV′, and the principal component model is
Y = ((n − 1)1/2U) ((n − 1)−1/2D) (V′). The standardized principal component scores matrix, A =
(n − 1)1/2U, and the component structure matrix, (n − 1)−1/2DV′, are plotted. The advantage of
creating a biplot based on (n−1)1/2U and (n−1)−1/2DV′ instead of U and DV′ is that the coordinates

∗In practice, the term biplot is sometimes used without qualification to refer to an approximate biplot.
†SVD is sometimes referred to in the psychometric literature as an Eckart-Young (1936) decomposition.
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Figure 1. Multidimensional Preference Analysis

do not get smaller as sample size increases. The fit, or proportion of the variance in the data accounted
for by the first two dimensions, is the sum of squares of the first two elements of (n− 1)−1/2D divided
by the sum of squares of all of the elements of (n− 1)−1/2D.

The dimensions of the MDPREF biplot are the first two principal components. The first principal
component represents the information that is most salient to the preference judgments. At one end
of the plot of the first principal component are the most preferred automobiles; the least preferred
automobiles are at the other end of the plot. The second principal component represents the direction
that is most salient to the preference judgments that is orthogonal to the first principal component. The
automobile point coordinates are the scores of the automobile on the first two principal components.
The judge vectors point in approximately the direction of judges most preferred cars, with preference
increasing as the vector moves from the origin.

Let a′i be row i of A = (n − 1)1/2U, b′j be row j of B = (n − 1)−1/2VD, ‖ai‖ be the length of ai,
‖bj‖ be the length of bj , and θ be the angle between the vectors ai and bj . The predicted degree of
(scaled) preference that an individual judge has for an automobile is a′ibj = ‖ai‖ ‖bj‖cosθ. Each car
point can be orthogonally projected onto each judge’s vector. The projection of the ith car on the jth
judge vector is bj((a′ibj)/(b′jbj)), and the length of this projection is ‖ai‖cosθ. The automobile that
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projects farthest along a judge vector has the highest predicted preference. The length of this projection,
‖ai‖cosθ, differs from the predicted preference, ‖ai‖ ‖bj‖cosθ, only by ‖bj‖, which is constant within
each judge. Since the goal is to look at projections of points onto the vectors, the absolute length of
a judge’s vector is unimportant. The relative lengths of the vectors indicate fit, with longer vectors
indicating better fit. The coordinates for the endpoints of the vectors were multiplied by 2.5 to extend
the vectors and create a better graphical display. The direction of the preference scale is important.
The vectors point in the direction of increasing values of the data values. If the data had been ranks,
with 1 the most preferred and n the least preferred, then the vectors would point in the direction of
the least preferred automobiles.

The people in the top left portion of the plot most prefer the large American cars. Other people, with
vectors pointing up and nearly vertical, also show this pattern of preference. There is a large cluster
of people who prefer the Japanese and European cars. A few people, most notably the person whose
vector passes through the “e” in “Chevette”, prefer the small and inexpensive American Cars. There
are no vectors pointing through the bottom left portion of the of the plot, which suggests that the
smaller American cars are generally not preferred by anyone within this group.

The first dimension, which is a measure of overall evaluation, discriminates between the American cars
on the left and the Japanese and European cars on the right. The second dimension seems to reflect
the sizes of the automobiles. Some cars have a similar pattern of preference, most notably Continental
and Eldorado, which share a symbol in the plot. Marketers of Continental or Eldorado may want to
try to distinguish their car from the competition. Dasher, Accord, and Rabbit were rated similarly, as
were Malibu, Mustang, Volare, and Horizon.

This 1980 example is quite prophetic even though it is based on a small nonrandom sample. Very few
vectors point toward the smaller American cars, and Mustang is the only one of them that is still being
made. Many vectors are pointing toward the European and Japanese cars, and they are still doing
quite well in the market place. Many vectors are pointing in the one to two o’clock range where there
are no cars in the plot. One can speculate that these people would prefer Japanese and European
luxury cars such as Accura, Lexus, Infinity, BMW, and Mercedes.

Preference Mapping. Preference mapping‡ (Carroll 1972) or PREFMAP plots resemble biplots, but
are based on a different model. The goal in PREFMAP is to take a set of coordinates for a set of objects,
such as the MDPREF car coordinates in example in Figure 1, and project in external information that
can aid in interpreting the configuration of points. Questions that can be addressed with PREFMAP
analyses include: Where is my product positioned relative to my competitors’ products? Why is my
product positioned there? How can I reposition my existing products? What new products should I
create?

The Preference Mapping Vector Model. Figure 2 contains an example in which three attribute
variables (ride, reliability, and miles per gallon) are displayed in the plot of the first two principal
components of the car preference data. Each of the automobiles was rated on these three dimensions on
a 1 to 5 scale, where 1 is poor and 5 is good. Figure 2 is based on the simplest version of PREFMAP−the
vector model. The vector model assumes that some is good and more is always better. This model is
appropriate for miles per gallon and reliability−the more miles a motorist can travel without refueling
or breaking down, the better. The end points for the attribute vectors are obtained by projecting
the attribute variables into the car space. If the attribute ratings are stored in matrix R, then the
coordinates for the end points are in the matrix β from the multivariate linear regression model R =

‡Preference mapping is sometimes referred to as external unfolding.
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Figure 2. Preference Mapping, Vector Model

Aβ + ε. A is the matrix of standardized principal component scores, or A could be the coordinates
from a multidimensional scaling analysis. The relative lengths of the vectors indicate fit, which is given
by the R2. As with MDPREF, the lengths of all vectors can be scaled by the same constant to make
a better graphical display.

PREFMAP analyses can help in the interpretation of principal component, multidimensional scaling,
and MDPREF analyses by projecting in external information that helps explain the configuration.
Orthogonal projections of the product points on an attribute vector give an approximate ordering of
the products on the attribute. The ride vector points almost straight up showing that the larger cars,
such as the Eldorado and Continental, have the best ride. In Figure 1, it was shown that most people
preferred the DL, Japanese cars, and larger American cars. Figure 2 shows that the DL and Japanese
cars were rated as the most reliable and have the best fuel economy. The small American cars are not
rated highly on any of the three dimensions, although some are on the positive end of miles per gallon.
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Figure 3. Preference Mapping, Ideal Point Model

The Preference Mapping Ideal Point Model. The ideal point model differs from the vector model
in that the ideal point model does not assume that more is better, ad infinitum. Consider the sugar
content of cake. There is an ideal amount of sugar that cake should contain−not enough sugar is not
good, and too much sugar is also not good. In the current example, the ideal number of miles per gallon
and the ideal reliability are unachievable. It makes sense to consider a vector model, because the ideal
point is infinitely far away. This argument is less compelling for ride; the point for a car with smooth,
quiet ride may not be infinitely far away. Figure 3 shows the results of fitting an ideal point model
for the three attributes. In the vector model, results are interpreted by orthogonally projecting the
car points on the attribute vectors. In the ideal point model, Euclidean distances between car points
and ideal points are compared. Eldorado and Continental have the best predicted ride, because they
are closest to the ride ideal point. The concentric circles drawn around the ideal points help to show
distances between the cars and the ideal points. The numbers of circles and their radii are arbitrary.
The overall interpretations of Figures 2 and 3 are the same. All three ideal points are at the edge of
the car points, which suggests the simpler vector model is sufficient for these data.

The ideal point model is fit with a multiple regression model and some pre- and post-processing. First
the A matrix is augmented by a variable that is the sum of squares of columns of A creating A∗. Then
solve for β from R = A∗β + ε. For a two-dimensional scatter plot, the ideal point coordinates are
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given by dividing each coefficient for the two axes by the coefficient for the sum-of-squares variable,
then multiplying the resulting values by −0.5. The coordinates are −0.5 β diag(β3)−1, where diag(β3)
is a diagonal matrix constructed from the third row of β. This is a constrained response-surface model.
The fit is given by the R2. See Carroll (1972) for the justification for the formula.

The results in Figure 3 were modified from the raw results to eliminate anti-ideal points. The ideal
point model is a distance model. The rating data are interpreted as distances between attribute ideal
points and the products. In this example, each of the automobiles was rated on these three dimensions,
on a 1 to 5 scale, where 1 is poor and 5 is good. The data are the reverse of what they should be−a
ride rating of 1 should mean this car is similar to a car with a good ride, and a rating of 5 should mean
this car is different from a car with a good ride. So the raw coordinates must be multiplied by −1 to
get ideal points. Even if the scoring had been reversed, anti-ideal points can occur. If the coefficient for
the sum-of-squares variable is negative, the point is an anti-ideal point. In this example, there is the
possibility of anti-anti-ideal points. When the coefficient for the sum-of-squares variable is negative,
the two multiplications by −1 cancel, and the coordinates are ideal points. When the coefficient for
the sum-of-squares variable is positive, the coordinates are multiplied by −1 to get an ideal point.

Other PREFMAP Models. The ideal point model presented here is based on an ordinary Euclidean
distance model. All points falling on a circle centered around an ideal point are an equal distance from
the ideal point. Two more PREFMAP models are sometimes used. The more general models allow for
differential weighting of the axes and rotations, so ellipses, not circles, show equal weighted distances.
All three ideal point models are response surface models. See Carroll (1972) for more information.

Correspondence Analysis. Correspondence analysis (CA) is a weighted SVD of a contingency table.
It is used to find a low-dimensional graphical representation of the association between rows and
columns of a table. Each row and column is represented by a point in a Euclidean space determined
from cell frequencies. Like MDPREF, CA is based on a singular value decomposition, but ordinary
SVD of a contingency table does not portray a desirable geometry.

Questions that can be addressed with CA and MCA include: Who are my customers? Who else should
be my customers? Who are my competitors’ customers? Where is my product positioned relative to
my competitors’ products? Why is my product positioned there? How can I reposition my existing
products? What new products should I create? What audience should I target for my new products?

CA is a popular data analysis method in France and Japan. In France, CA was developed under the
strong influence of Jean-Paul Benzécri; in Japan, under Chikio Hayashi. CA is described in Lebart,
Morineau, and Warwick (1984); Greenacre (1984); Nishisato (1980); Tenenhaus and Young (1985); Gifi
(1990); Greenacre and Hastie (1987); and many other sources. Hoffman and Franke (1986) provide a
good introductory treatment using examples from marketing research.

Simple CA. This section is primarily based on the theory of CA found in Greenacre (1984). Let N be
an (nr × nc) contingency table of rank q ≤ MIN(nr, nc). Let 1 be a vector of ones of the appropriate
order, I be an identity matrix, and diag() be a matrix-valued function that creates a diagonal matrix
from a vector. Let f = 1′N1, P = (1/f)N, r = P1, c = P′1, Dr = diag(r), and Dc = diag(c). The
scalar f is the sum of all elements in N. P is a matrix of relative frequencies. The vector r contains row
marginal proportions or row masses. The vector c contains column marginal proportions or column
masses. Dr and Dc are diagonal matrices of marginals. The coordinates of the CA are based on the
generalized singular value decomposition of P, P = ADuB′, where A′Dr

−1A = B′Dc
−1B = I. A
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is an (nr × q) matrix of left generalized singular vectors, Du is a (q × q) diagonal matrix of singular
values, and B is an (nc × q) matrix of right generalized singular vectors. The first (trivial) column
of A and B and the first singular value in Du are discarded before any results are displayed. This
step centers the table and is analogous to centering the data in ordinary principal component analysis.
In practice, this centering is done by subtracting ordinary chi-square expected values from P before
the SVD. The columns of A and B define the principal axes of the column and row point clouds,
respectively. The fit, or proportion of the inertia (analogous to variance) in the data accounted for by
the first two dimensions, is the sum of squares of the first two singular values, divided by the sum of
squares of all of the singular values. Three sets of coordinates are typically available from CA, one
based on rows, one based on columns, and the usual set is based on both rows and columns.

The row profile (conditional probability) matrix is defined as R = Dr
−1P = Dr

−1ADuB′. Each (i, j)
element of R contains the observed probability of being in column j given membership in row i. The
values in each row of R sum to one. The row coordinates, Dr

−1ADu, and column coordinates, Dc
−1B,

provide a CA based on the row profile matrix. The principal row coordinates, Dr
−1ADu, and standard

column coordinates, Dc
−1B, provide a decomposition of Dr

−1ADuB′Dc
−1 = Dr

−1PDc
−1 = RDc

−1.
Since Dr

−1ADu = RDc
−1B, the row coordinates are weighted centroids of the column coordinates.

Each column point, with coordinates scaled to standard coordinates, defines a vertex in (nc − 1)-
dimensional space. All of the principal row coordinates are located in the space defined by the standard
column coordinates. Distances among row points have meaning, but distances among column points
and distances between row and column points are not interpretable.

The formulas for the analysis of the column profile matrix can easily be derived by applying the
row profile formulas to the transpose of P. The principal column coordinates Dc

−1BDu are weighted
centroids of the standard row coordinates Dr

−1A. Each row point, with coordinates scaled to standard
coordinates, defines a vertex in (nr − 1)-dimensional space. All of the principal column coordinates
are located in the space defined by the standard row coordinates. Distances among column points
have meaning, but distances among row points and distances between row and column points are not
interpretable.

The usual sets of coordinates§ are given by Dr
−1ADu and Dc

−1BDu. One advantage of using these
coordinates is that both sets are postmultiplied by the diagonal matrix Du, whose diagonal values are
all less than or equal to one. When Du is a part of the definition of only one set of coordinates, that
set forms a tight cluster near the centroid, whereas the other set of points is more widely dispersed.
Including Du in both sets makes a better graphical display. However, care must be taken in interpreting
such a plot. No correct interpretation of distances between row points and column points can be made.
Less specific statements, such as “two points are on the same side of the plot” have meaning.

Another property of this choice of coordinates concerns the geometry of distances between points within
each set. Distances between row (or column) profiles are computed using a chi-square metric. The
rationale for computing distances between row profiles using the non-Euclidean chi-square metric is as
follows. Each row of the contingency table may be viewed as a realization of a multinomial distribution
conditional on its row marginal frequency. The null hypothesis of row and column independence is
equivalent to the hypothesis of homogeneity of the row profiles. A significant chi-square statistic is
geometrically interpreted as a significant deviation of the row profiles from their centroid, c′. The
chi-square metric is the Mahalanobis metric between row profiles based on their estimated covariance
matrix under the homogeneity assumption (Greenacre and Hastie 1987). A parallel argument can be
made for the column profiles.

§This set is often referred to as the French standardization due to its popularity in France.
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Figure 4. Simple Correspondence Analysis

The row coordinates are Dr
−1ADu = Dr

−1ADuB′Dc
−1B = (Dr

−1P)(Dc
−1/2)(Dc

−1/2B). They are
row profiles Dr

−1P rescaled by Dc
−1/2 (rescaled so that distances between profiles are transformed

from a chi-square metric to a Euclidean metric), then orthogonally rotated with Dc
−1/2B to a principal

axes orientation. Similarly, the column coordinates are column profiles rescaled to a Euclidean metric
and orthogonally rotated to a principal axes orientation.

CA Example. Figure 4 contains a plot of the results of a simple CA of a survey of car owners.
The questions included origin of the car (American, Japanese, European), and marital/family status
(single, married, single and living with children, and married living with children). Both variables are
categorical. Table 1 contains the crosstabulation and the observed minus expected frequencies. It can
be seen from the observed minus expected frequencies that four cells have values appreciably different
from zero (Married w Kids/American, Single/American, Married w Kids/Japanese, Single/Japanese).
More people who are married with children drive American cars than would be expected if the rows
and columns are independent, and more people who are single with no children drive Japanese cars
than would be expected if the rows and columns are independent.
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Table 1
Simple Correspondence Example Input

Contingency Table Observed Minus Expected Values

American European Japanese American European Japanese

Married 37 14 51 -1.5133 0.4602 1.0531
Married w Kids 52 15 44 10.0885 0.2655 -10.3540
Single 33 15 63 -8.9115 0.2655 8.6460
Single w Kids 6 1 8 0.3363 -0.9912 0.6549

CA graphically shows the information in the observed minus expected frequencies. The right side of
Figure 4 shows the association between being married with children and owning an American Car.
The left side of the plot shows the association between being single and owning a Japanese Car. This
interpretation is based on points being located in approximately the same direction from the origin
and in approximately the same region of the space. Distances between row points and column points
are not defined.

Multiple Correspondence Analysis. Multiple correspondence analysis (MCA) is a generalization of
simple CA for more than two variables. The input is a Burt table, which is a partitioned symmetric
matrix containing all pairs of crosstabulations among a set of categorical variables. Each diagonal
partition is a diagonal matrix containing marginal frequencies (a crosstabulation of a variable with
itself). Each off-diagonal partition is an ordinary contingency table. Each contingency table above
the diagonal has a transposed counterpart below the diagonal. A Burt table is the inner product of
a partitioned design matrix. There is one partition per categorical variable, and each partition is a
binary design matrix. Each design matrix has one column per category, and a single 1 in each row.
The partitioned design matrix has exactly m ones in each row, where m is the number of categorical
variables. The results of a MCA of a Burt table, N, are the same as the column results from a simple
CA of the design matrix whose inner product is the Burt table. MCA is not a simple CA of the
Burt table. The coordinates for MCA are Dc

−1BDu, from (1/f)N = P = P′ = BDu
2B′, where

B′Dc
−1B = I.

MCA Example. Figure 5 contains a plot of the results of an MCA of a survey of car owners. The
questions included origin of the car (American, Japanese, European), size of car (small, medium, large),
type of car (family, sporty, work vehicle), home ownership (owns, rents), marital/family status (single,
married, single and living with children, and married living with children), and sex (male, female). The
variables are all categorical.

The top-right quadrant of the plot shows that the categories single, single with kids, 1 income, and
renting a home are associated. Proceeding clockwise, the categories sporty, small, and Japanese are
associated. In the bottom-left quadrant we see the association between being married, owning your own
home, and having two incomes. Having children is associated with owning a large American family car.
Such information could be used in marketing research to identify target audiences for advertisements.
This interpretation is based on points being located in approximately the same direction from the origin
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Figure 5. Multiple Correspondence Analysis

and in approximately the same region of the space. Distances between points are not interpretable in
MCA.

Other CA Standardizations. Other standardizations have been proposed for CA by several authors.
The usual goal is to provide a standardization that avoids the problem of row and column distances
being undefined. Unfortunately, this problem remains unsolved. Carroll, Green, and Schaffer (1986)
proposed that simple CA coordinates should be transformed to MCA coordinates before they are
plotted. They argued that all distances are then comparable, but Greenacre (1989) showed that their
assertion was incorrect. Others have also claimed to have discovered a method of defining the between
row and column differences, but so far no method has been demonstrated to be correct.
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Notes

The Geometry of the Scatter Plots. All of the scatterplots in this chapter were created with the
axes equated so that a centimeter on the y-axis represents the same data range as a centimeter on the
x-axis. This is important. Distances, angles between vectors, and projections are evaluated to interpret
the plots. When the axes are equated, distances and angles are correctly represented in the plot. When
axes are scaled independently, for example to fill the page, then the correct geometry is not presented.
The important step of equating the axes is often overlooked in practice.

In a true biplot, A = UDr and B = VD(1−r) are plotted, and the elements of Y can be approximated
from yij ≈ a′ibj . For MDPREF and PREFMAP, the absolute lengths of the vectors are not important
since the goal is to project points on vectors, not look at scalar products of row points and column
vectors. It is often necessary to change the lengths of all of the vectors to improve the graphical display.
If all of the vectors are relatively short with end points clustered near the origin, the display will not
look good. To avoid this problem in Figure 1, both the x-axis and y-axis coordinates were multiplied
by the constant 2.5, to lengthen all vectors by the same relative amount. The coordinates must not be
scaled independently.

Software. All data analyses were performed with Release 8.00 of the SAS System. MDPREF is
performed with PROC PRINQUAL, simple and multiple correspondence analysis are performed with
PROC CORRESP, and PREFMAP is performed with PROC TRANSREG. The plots are prepared
with the SAS %PlotIt autocall macro. If your site has installed the autocall libraries supplied by SAS
Institute and uses the standard configuration of SAS software supplied by the Institute, you need only
to ensure that the SAS system option mautosource is in effect to begin using the autocall macros. See
pages 597–599 and pages 753–783.

Conclusions

Marketing research helps marketing decision makers understand their customers and their competition.
Correspondence analysis compactly displays survey data to aid in determining what kinds of consumers
are buying certain products. Multidimensional preference analysis shows product positioning, group
preferences, and individual preferences. The plots may suggest how to reposition products to appeal to
a broader audience. They may also suggest new groups of customers to target. Preference mapping is
used as an aid in understanding MDPREF and multidimensional scaling results. PREFMAP displays
product attributes in the same plot as the products. The insight gained from perceptual mapping
methods can be a valuable asset in marketing decision making. These techniques can help marketers
gain insight into their products, their customers, and their competition.


